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SUMMARY

In a not-necessarily-stationary time-series, a Moving F statistic can identify points of change in the
nature of the series model (the estimate of the underlying data-generating process), in its parameters,
in residual variability, or in any combination of these. In addition, it can uncover changes masked by a
reduction in residual variability. Patterns in the forces giving rise to the data may often be perceived. To
form the Moving F , a theory of the process or a regression method on a baseline sample estimates the
series model and the residual mean square about it is calculated. This series model is extended past the
baseline with residuals assumed to be normally distributed. The Moving F is calculated as the moving
average of squared deviations about the series model in ratio to the baseline mean square. The Moving
F crossing the critical F identi�es a change in the series model, i.e. signals its presence and location.
In our experience, this Moving F method is easier to use than other commonly employed change-point
identi�ers (CUSUM, EWMA, data-based bandwidth selection, MCMC) and has been found to work
in several situations where some other identi�ers fail. (MCMC is more general, but requires advanced
statistical ability.) Examples given are monitored prostate speci�c antigen in a post-treatment prostate
cancer patient and detection of Harold Shipman’s medical murders. Moving F is ‘simple and general’ in
the sense of both simultaneously; we have not found another relatively simple method to be as general.
Published in 2005 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Suppose we encounter a not-necessarily-stationary time-series, perhaps laboratory readings on
a patient through time. If a change of some sort occurs in the state of this patient indicated
by these readings, we wish to detect it and estimate the point at which it occurs (identify the
change-point).
We will list the most common types of change for which a change-point identi�er is

needed. Then we will introduce and demonstrate a prospective analysis form of the Moving
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F-statistic. (The original form could analyse only retrospective data.) Finally, we will note
the most frequently used methods to identify changes.

2. TYPES OF CHANGE

We observe a time series of points in time, (yi; ti), i=1; 2; : : : ; L. These points arise from
an unknown data-generating process with functional form estimated as the series model.
yi=f(ti; R)+ei, where f is the series model, R is a vector of parameters, and ei is NID(0; �i2).
(NID≡ normally and independently distributed.) A change exists at t= t∗, where t∗ is un-
known.
Time may be measured in any units, milliseconds to years. While f may take any form,

practicality constrains use to a small sample of data after a potential change, limiting f to
a few simple forms. f may change (e.g. linear to exponential or quadratic), one or more
components of R may change (e.g. jumps, slope changes, changes in curvature), and=or the
residual variability may change.
The term regime, introduced by Quandt [1], has been used to refer to the totality of

characteristics in�uencing a time-dependent process, i.e. f, R, and �2 simultaneously. Most of
the change-point literature has addressed change in a single characteristic, primarily a jump,
and occasionally an increase (not decrease) in residual variance. We have found no methods
that address full regime changes except Moving F [2, 3] and Monte Carlo Markov chain
(MCMC) methods [4].
One possible combination of events limiting all change-point methods that has not been

addressed for prospective applications is the masking of a change by a reduction in variance.
The increase in the triggering statistic of a change-point method caused by a change in f or
R may be o�set by a decrease in �2. Although the triggering of the statistic gives evidence
of a change, the absence of triggering is not conclusive evidence of non-change. Masked
changes may be detected only by testing the regime, not just one parameter, accompanied
by a decomposition of the regime into portions of the triggering statistic due to the various
regime components.

3. THE MOVING F METHOD

3.1. Example data

Prostate speci�c antigen (PSA) is related in a probabilistic manner to prostate cancer.
According to the most frequently used clinical guidelines at the time of the example, a
PSA level below 4 was normal, between 4 and 10 was equivocal, and above 10 indicated
a high probability of cancer. We obtained data for patients whose prostate cancer had been
treated by radiation and were at risk for recurrence. Figure 1 shows PSA readings from a
man whose level was often in the equivocal range and so was monitored weekly. (For con-
venience, some missing data were supplied by resampling techniques, not a requirement for
Moving F.) Treatment is more likely to be successful if delivered soon after a true upward
turn in PSA. When PSA reach 10 at 42 months, it was accepted as adequate clinical evidence
of a cancer recurrence, justifying aggressive treatment. Could this change-point have been
identi�ed sooner by statistical methods?
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Figure 1. Weekly PSA readings on a patient with equivocal prostate condition. The clinician decided
to intervene when the undulating PSA level broke 10 at month 42. (The short line segment on the

beginning data represents the baseline �t to be used in the analysis.)

A reader may discern an increase in PSA level at 24 or 30 months, but that is from a
retrospective view of the entire data set. To mimic a clinician’s experience, the reader could
move a covering piece of paper datum by datum, making a clinical decision after seeing each
new datum. We believe the reader will �nd either a rather late decision to initiate treatment
or a high false positive rate.

3.2. Concept of the Moving F method

We estimate the nature of the series model from the �rst m data (baseline) of the time-series,
usually from theoretical considerations or by a regression �t. The mean square of residuals
about the baseline series model provides a baseline variance, say s2b. We choose the length of a
moving sample, n, in a similar fashion. The moving average of n squared deviations from the
series model provides a moving variance, say s2k , where k−n indicates the candidate change-
point. With the assumption of normal residuals, the ratio of these variances s2k =s

2
b generates

a Moving F with n−1, m−1 degrees of freedom. A signi�cant change in the time series is
signalled when the Moving F breaks a critical F value at some point tk (when not signi�cant
at tk−1), detecting a change-point and estimating its location.
User de�ned parameters are the baseline size (m) and moving sample size (n), chosen from

characteristics of the problem or by judgment. Assumptions are normality of residuals and
correctness of the series model.
We describe Moving F as general because it can accommodate combinations of parameters

changing simultaneously (regime changes) and can uncover masked changes.
We describe Moving F as simple because it can be handled by users outside the �eld of

statistics using widely available software. For example, a medical investigator can perform a
Moving F in a few steps on Excel software or on a statistics package, e.g. Stata.
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Figure 2. Moving F statistic on PSA levels (for regime as a whole). The critical F(12; 12; 0:95)
is broken at 19 months, identifying a change 23 months prior to PSA level reaching 10.

3.3. Calculation of Moving F

(1) Starting with spreadsheet columns of time ti and readings yi, choose a baseline sample
and identify f, the functional form of the baseline. The form might arise from theoretical
grounds apart from statistics or, lacking theory, from a regression �t of the baseline data.
Make a column of f values, fi, if f is other than a constant. (2) Calculate s2b, the residual
mean square of the baseline data about f. (3) Make a column (yi−fi)2=(n−1)s2b. (4) The
moving average of the column in step 3 is the Moving F. These steps are illustrated using
data in Section 3.8.

3.4. Application of Moving F to the example

We chose the length of the moving sample by mimicking the clinical decision making process.
After prostate cancer treatment, the clinician will usually wait about three months before
testing the PSA to allow the level to drop in response to the treatment, so we chose the
�rst m=13 weekly readings as the baseline and chose a moving sample of size n=13. Prior
to recurrence, PSA level is expected to remain constant; after recurrence, it is expected to
increase continually. A linear regression of the baseline data yields p=0:886 for the slope
of the line with R2 = 0:002, indicating that the PSA level was following a constant series
model. We chose yi=mb+ei as the model. The mean for the baseline is mb = 3:6319 and the
regression residual mean square s2b = 0:6802. (Urologists use only the �rst decimal place in
PSA readings.)
We calculated a column of squared deviations from mb divided by n−1=12 and divided

each by s2b. We calculated the moving average of these elements to form the Moving F, shown
in Figure 2. A horizontal line indicates the critical F(12; 12; 0:95)=2:69. The Moving F can
be seen to undulate about F =1 for about 18 months. At 19 months, the Moving F reaches
3.14, breaking the critical F to become signi�cant for �=0:05. If this method had been used,
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Figure 3. Relationship among observations, errors, and functional models. Datum (ti, yi) is a point prior
to the change, datum (tj, yj), after.

the clinical decision to intervene would have been made almost 2 years before the actual 42
months. The reader might note that the Moving F at 30 months gave p¡0:001. Not shown
in Figure 2 is a calculated Moving F exceeding 65 by 42 months.

3.5. Development of the Moving F method

Suppose there exists a time-dependent variable that may contain some change in regime
elements, i.e. one or more of f, elements of R, and=or �2i . We want to identify any of these
changes. Smith’s 1975 article [5] has described the problem in considerable generality. Let us
denote by the subscripts 0 and 1 characteristics before and after the change-point, respectively.
Symbolically

yi =f0(ti; R0) + e0i ; ti¡t∗ and (1)

yi =f1(ti; R1) + e1i ; ti¿t∗ (2)

where e0i, e1i are assumed NID(0; �20 ), NID(0; �
2
1 ), respectively. For shorthand, let f0, f1 at

ti be denoted f0i, f1i, respectively, and di=f1i − f0i. Smith addressed cases with parameters
known, partially known, and unknown for e0i, e1i distributed as binomial and normal. In most
applications treated in the literature, f0 and f1 are treated as the simplest case, i.e. constants.
Moving F , by contrast, has taken f0 and f1 to be general linear models, which agrees with
Smith’s case 4.4. The estimates of the parameters in f0 and f1 are taken as the regression
�ts to the postulated functional forms. The relationship among the terms de�ned here may be
visualized as in Figure 3.
We take a baseline sample of size m having sample variance

s2b =
1
�m

m∑
i=1
(yi − f0i)2 (3)
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with �m(=m − number of parameters in R0) degrees of freedom (df). We take a moving
sample of size n with rightmost observation k(¿m+n) with similarly de�ned sample variances
and df

s20k=
1
�n

k∑
i=k−n+1

(yi − f0i)2 any t and

s21k=
1
�n

k∑
i=k−n+1

(yi − f1i)2; t¿t∗
(4)

k progresses m+ n, m+ n+ 1, m+ n+ 2; : : : ; L. The Moving F statistic is de�ned as

Fk =
s2k
s2b

(5)

When tk¡t∗, both s2k and s
2
b estimate �

2
0 , and Fk di�ers from 1 only randomly. However,

when tk¿t∗, s20k contains components of the regime based on f1 and may be written as

s20k =
1
�n

k∑
i=k−n+1

[(yi − f1i) + (f1i − f0i)]2 = s21k + var(d) + cov(f1; d) (6)

As the random error is uncorrelated with a change in the form of the functional model in
expectation, the covariance term vanishes so that

E{Fk}=E
{
s20k
s2b

}
=
�21
�20
+
�2d
�20

(7)

a change (if any) in the variability of the residual plus a change (if any) in the variability
due to a model shift. The Moving F composes a moving test of the hypothesis:

H0: The regime components have not changed from baseline (8)

Indeed, when the Moving F method �rst appeared in 1970 in bi-directional form, it was
called ‘testimation’, because the test consists of the estimation process: an existing estimate
of a point of change implies rejection of H0.
When a signi�cant change occurs, the component(s) (such as mean, slope, curvature, etc.

or residual variance) from which it arises is identi�ed by analysis of the variance. The mean
square due to each putative causal component is placed in ratio to the error mean square,
forming F ratios. With a Moving F, the post-t∗ sample is subjected to a regression, providing
causal components and their sample variances. The mean square due to each component and
to the post-t∗ error mean square are placed in ratio to the pre-t∗ error mean square to form
F ratios.
Furthermore, the change in expected F that occurs as t passes t∗ is written as

E{Fk − Fb}=E
{
s20k(t¿t

∗)
s2b

− s20k(t¡t
∗)

s2b

}
=
�21
�20
+
�2d
�20

− �20
�20
=
�21 − �20
�20

+
�2d
�20

(9)

We note that the change in the residual (error) variability (�21 −�20 ) is either positive or nega-
tive. If this term remains unchanged while the series model changes signi�cantly, F increases
signi�cantly. However, when the series model remains the same (�2d =0) while the residual
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Table I. Set of possible expected mean square change combinations due to either the
series model or residual variability or both. �20 denotes residual mean square assuming
pre-change model and �21 , assuming post-change model. �

2
� denotes mean square of

model di�erence. Symbol � (or �) denotes ‘is signi�cantly less (or greater) than’.
(When this double symbol appears in two columns, only one need be signi�cant.)

�20 versus �
2
1 Size of �2� Change Breaks signi�cance

�20 = �
2
1 �2��0 Change in a parameter of f Upper F bound

�20��21 �2� =0 Increase in residual variability Upper F bound
�20��21 �2��0 Increase in variability plus a Upper F bound

change in a parameter of f
�20��21 �2� =0 Decrease in residual variability Lower F bound
�20��21 �2��0 Decrease in variability plus a Either upper or

change in a parameter of f lower or neither

variability about it changes signi�cantly, F can either increase or decrease signi�cantly,
requiring a two-tailed F test. It follows that when the series model changes and the resid-
ual variability decreases simultaneously, the F either increases or decreases signi�cantly or
neither, depending on the relative amounts of change. It is possible that a signi�cant change
in series model occurs, but is masked by a decrease in residual variability. When masked
signi�cance occurs, it is uncovered graphically. The Moving F values due to error change
(s21k−s20k)=s2b(=Fek , say) and to model change s2dk=s2b(=Fdk) should be plotted along with the
total regime Moving F(Frk). The former, a two-tailed test, requires two critical F values, while
the latter, only one. A masking is uncovered if Fdk is signi�cant when Frk is not. A summary
of e�ects from relative changes in the component mean squares appears in Table I.

3.6. Application continued

Up to this point in the example, the Moving F has been a simple tool with obvious interpre-
tation: calculate an F ratio and move it along until it triggers signi�cance. Let us examine
the signi�cant change observed in the PSA data in Figure 2 for causal components and for
masking.
While it seems apparent from inspecting the data that a change in the model and not in the

variance is responsible for the observed signi�cance in F, let us verify it. Figure 4 shows that
Fek , k¿t∗, does not show signi�cance but Fdk does. Frk , the Moving F shown in Figure 2,
shows signi�cance at 19 months, although it is not apparent in Fdk until 20 months. The
signi�cance at t=19 is masked by a change in error variability.
To decompose the Moving F, we introduce a model for f1 starting at t∗+1. A lin-

ear regression �t to that sample yields p=0:093 for a test of a horizontal (stationary)
model with R2 = 0:236 (adjusted to 0:166). These results suggest the beginnings of a slope,
but one that is not yet statistically signi�cant. The new mean is 4:32, with post-change
s21 = 0:5005. Fe= s

2
1 =s

2
0 = 0:74, so the post-change variability is about

3
4 of that pre-change.

This leaves Fd=Fr−Fe=3:14−0:74=2:40, less than the critical F =2:69. However, Fd is the
ratio of mean square due to the model divided by s20 . Had this mean square been divided
by the variability at the point of change, F� would have been 1

0:75 = 1:33 times as large,
or 3:19, which would have exceeded the critical value. Thus the change in model at t∗ is

Published in 2005 by John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1067–1077



1074 R. H. RIFFENBURGH AND K. M. CUMMINS

Time (months)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42

0

2

4

6

8

10

12

M
o

vi
n

g
 F model

residual

two-tailed F critical

one-tailed F critical

Figure 4. Moving F plots of the model and of residuals for the PSA-level data. The one-tailed critical
F(12; 12; 0:95) is 2.69 and the two-tailed critical F values are 0.31 and 3.28.

signi�cant at 19 months, but the signi�cance has been masked by the reduction in the residual
variance.
Under the (regression-satis�ed) assumption of a constant as the model from 19 to, say,

34 months, the decomposition of Fr into Fd and Fe is not di�cult. The components may be
calculated as a moving average of the form [(y−m)2 × n=�]=s20 for each ti¿t∗, where � is the
appropriate df, y is the moving average of PSA values with m being mb for Fd, and y is the
PSA value with m being the moving average of PSA values for Fe. A plot of the components
thus calculated appears as Figure 4, with horizontal lines shown for the critical F values.

3.7. Multiplicity of tests

It could be argued that a moving sample test is actually a multiplicity of tests. However,
unrecognized false positives and negatives are quite rare. A false positive would require a
random spike, or even a small sequence of spikes, that would cause F to cross the critical
line. Such an occurrence generates an obvious mesa (vertical-sided, �at-topped hill) in the plot
if above the series model or an arroyo (its mirror image valley) if below the series model.
A false negative would require a sustained reduction in error variance to mask an otherwise
signi�cant F, and has been already discussed.

3.8. Additional examples

Harold Shipman was a rural physician in Britain who was discovered in 1998 to have murdered
a large number of his patients. From his recent article [6], Spiegelhalter provided the authors
with data on the cumulative number of death certi�cates by sex that Shipman signed in excess
of the local average, totalling 224. Starting from 1978 with the �rst excess, we pooled sexes
and di�erenced to obtain total counts of excess certi�cates by year. These data, along with
the following calculations to generate the Moving F, are given in Table II. We used the �rst
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Table II. Number of death certi�cates signed by Dr Shipman by year in
excess of the local average starting with the �rst excess in 1978, along
with calculations providing a Moving F . The �rst 4 data are taken as
baseline, with 4:19= s2b, the standard deviation about the average. The
third column contains (y−f)2=(n−1)s2b, where f is taken as 0 (null
hypothesis: no excesses occur). The fourth column, a moving average of 3

of third column values, is Moving F . F(3; 2; 0:95)=9:55.

Year Excess Squares Moving F

1978 10.3 (1)
1979 10.3 (1)
1980 8.3 (1)
1981 6.0 (1)
1982 5.5 3.6098 2.43
1983 −0.8 0.0764 7.44
1984 12.5 18.6456 14.84
1985 14.7 25.7864 15.48
1986 4.1 2.0060 10.89
1987 6.4 4.8878 6.44
1988 10.2 12.4153 10.24
1989 10.6 13.4081 8.61
1990 0.1 0.0012 4.88
1991 3.2 1.2220 0.46
1992 −1.2 0.1718 10.65
1993 16.0 30.5489 11.77
1994 6.2 4.5871 41.79
1995 27.5 90.2446 68.86
1996 30.6 111.7375 109.60
1997 32.6 126.5210 90.48
1998 16.6 32.8831 79.85

four data as baseline, assuming a constant as a model for so small a sample and using the
baseline variance as s2b. We calculated a Moving F of three data for the remainder, giving rise
to Figure 5. It can be seen that the Moving F becomes signi�cant in 1984. Had a Moving
F death-certi�cate monitor been used and Shipman been stopped in 1984, 178 patients might
have been saved.
An example of masked change was given by Ri�enburgh [7] in which a model change

is totally obscured. In this case, heart rate (HR) of trauma victims with extensive blood
loss was compared for those given intrathecal versus the usual intravenous morphine, the
latter known to impair the vascular system. Intrathecal morphine is seen to avoid raising HR.
However, there is a change (reduction) in HR that was masked by a decrease in the residual
mean square. When tested for masking, the reduction appeared, allowing the unanticipated
conclusion that intrathecal morphine actually calmed the vascular system.
An example of decomposing Frk for a non-stationary time series was given by Ri�enburgh

[2, 3]. If the model is known or postulated theoretically, that model can be used rather easily.
However, this is often not the case in prospective analysis, where a moving regression �t to
the moving sample will provide the model. This can be programmed into an analysis routine
for rapid analysis, as in the case of monitoring patients in surgery or intensive care.
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Figure 5. Moving F for Shipman’s excess number of death certi�cates. The baseline used four points
and the moving sample three. Critical F(3; 2; 0:95)=9:55.

An additional bene�t to the Moving F method, not as easily seen by other change-point
methods, is the perception of various data patterns. Patterns for outliers were mentioned in
Section 3.8. An example of relating a Moving F pattern to a cause may be seen in the size
of the U.S. Navy Hospital Corps, where a large data burst occurs during World War II [8].
A di�erent pattern can be seen in the PSA data in Figures 1, 2, and 4. Three high readings
at about month 32 yield a sharp peak with sloped sides.

4. MOVING F COMPARED TO OTHER METHODS

It is convenient to categorize change identi�cation approaches by sampling schemes: periodic,
accumulating, smoothed, or moving samples.
Periodic samples: Periodic or sporadic sampling, e.g. quality or process control, may cost

less than 100 per cent sampling and it allows destructive sampling, but it detects a change
locating it only as having occurred since the last previous sample. Periodic sampling does not
test regime changes nor detect masking.
Cumulative samples: In cumulative sampling, the analysis has the property of memory. An

unusual deviation in the series is never forgotten—but so is the in�uence of an outlier or a past
illness. Such memory is useful in some cases, but disadvantageous in others. The prominent
methods are cumulative sum (CUSUM), originated by Page in 1954 [9], and exponentially
weighted moving average (EWMA), originated by Roberts in 1959 [10]. The e�ect of memory
is muted in EWMA, in which a fractional weight causes disadvantageous memory to diminish
through time. Cumulative sampling can treat some subsets of regime change, but not general
ones, nor does it detect masking.
Smoothed samples: Current-data methods, i.e. moving data not contrasted with baseline

data, largely depend on detecting patterns that emerge from smoothing. Recently, Marron
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and Chaudhuri [11] conceived of slope change in a moving regression �t to detect changes.
Speci�cally, Kim and Marron (SiZer for jump detection, draft manuscript, personal commu-
nication, 2003) show that the slope forms a cusp at a change in a stationary series. Regime
testing has not been developed, nor has detection of masking.
Moving samples: Moving samples compared to a baseline sample include not only Moving

F , but also MCMC. MCMC uses a baseline to provide a Bayesian prior probability and a
likelihood model. Basically, an appropriate model is posed [12], tested [13], and Monte Carlo
integrated, and then carried along the time-series by Markov chain methods, speci�cally by
the Metropolis–Hastings algorithm [14]. MCMC is capable of addressing all the speci�c cases
documented by Smith. Moving F can also treat all of Smith’s cases, except that it requires
normality of the residuals. Both methods address full regime change analysis. MCMC is more
general than Moving F in that it will solve a great many problems other than change-point
identi�cation. However, it requires a higher level of mathematical ability.

5. CONCLUSION

Moving F is, we believe, the simplest change-point method to use, and can be applied and
understood by non-statisticians. Its generality is limited only by the assumption of normality
of residuals about the series model, and arbitrary choices of moving sample sizes. We say
simple and general in the sense of both; no other relatively simple method is as general.
Questions about Moving F remain that could be answered by further study include its

robustness, e.g. sensitivity to choosing the wrong model, and its power relative to other
change-point methods.
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